matematiku

Attila Szabo – Niclas Larson – Gunilla Viklund – Mikael Marklund – Daniel Dufåker –

VUX 2b/2c

Till läsaren

I ELEVBÖCKERNA I SERIEN MATEMATIK ORIGO finns uppgifter där vi rekommenderar användning av grafritande hjälpmedel. I elevböckerna ger vi exempel på hur dessa uppgifter kan lösas med grafritande räknare. Men i gymnasieskolan är det i dag allt vanligare att lösa sådana uppgifter med andra digitala hjälpmedel, t.ex. GeoGebra. Därför har vi i det här materialet valt att visa hur man kan använda GeoGebra för att lösa denna typ av uppgifter. Uppgifterna är hämtade från elevbokens exempel. Vi visar också hur man kan använda GeoGebra för att utföra de beräkningar som finns under rubriken ON På din räknare.

Exemplen med lösningar i GeoGebra finns till var och en av elevböckerna i serien Matematik Origo och är tänkta att användas parallellt med elevboken. För att göra det enkelt att hitta finns det sidhänvisningar till de exempel i elevboken som materialet bygger på. I lösningarna utgår vi från GeoGebra Classic 6, som finns tillgängligt gratis via www.geogebra.org/classic. Observera att vi visar *ett* sätt att lösa uppgifterna. Inte sällan är det möjligt att lösa dem på andra sätt eller med andra kommandon.

De uppgifter i elevboken där du uppmanas att använda grafritande räknare får du lösa med valfritt grafritande hjälpmedel.

Vi hoppas att du kommer att ha nytta av materialet! *Författarna*

Har du synpunkter eller förslag på förbättringar? Hör av dig till emelie.reutersward@sanomautbildning.se

(⊕→ Exempel:	Lös ekvationen $x(x + 3) = 3x + 14$ exakt. Ange även ett närmevärde till lösningen med en decimals noggrannhet.					
Lösning:	x(x+3) = 3x + 14	Förenkla VL				
	$x^2 + 3x = 3x + 14$					
	$x^2 + 3x - 3x = 3x + 14 - 3x$	Subtrahera 3x från båda leden				
	$x^2 = 14$					
	$x = \pm \sqrt{14}$	Exakt lösning				
	$x = \pm \sqrt{14} \approx \pm 3,7$	För att beräkna √14 i GeoGebra, använder du rottecknet på GeoGebras tangentbord eller skriver sqrt(14).				
	Svar: $x_1 = \sqrt{14} \approx 3,7; x_2 = -\sqrt{14} \approx -3,7$					

ON Med ditt digitala hjälpmedel

🛛 Tangentbordet har symbolen 🔤 🌖

Vill du beräkna potensen 2^{1/15} med GeoGebra skriver du in uttrycket **2^1/15** i inmatningsfältet.

Vill du beräkna rotuttrycket $\sqrt[15]{2}$ öppnar du GeoGebras tangentbord, väljer fliken **f(x)** och klickar på **veri**. Du kan också skriva **nrot(2, 15)** direkt i inmatningsfältet.

- $\mathsf{a}=2^{\frac{1}{15}}$
- → 1.05
- $b = \sqrt[15]{2}$
- $\rightarrow 1.05$

(→ Exempel :	Jimmie sätter in 20 000 kr på ett konto med den garanterade räntan 4,5 %. Hur länge dröjer det tills pengarna har fördubblats?							
Lösning:	Räntan 4,5 % ger förändringsfaktorn 1,045. Om vi antar att det dröjer <i>x</i> år tills pengarna fördubblats, så får vi exponentialekvationen							
	$20\ 000\cdot 1,045^x=40\ 000$ När pengarna fördubblats har Jens 40 000 kr på kontot							
	Den här ekvationen kan vi lösa grafiskt genom att rita $y = 20\ 000 \cdot 1,045^x$ och $y = 40\ 000$ i samma koordinatsystem. Lösningen till ekvationen kan vi avläsa som <i>x</i> -koordinaten till skärningspunkten mellan kurvorna.							
	Mata i tur och ordning in de två funktionsuttrycken i inmatningsfältet. Välj \nearrow under menyn med \bullet^{A} överst och klicka på skärningspunkten.							
	$ \textcircled{\begin{tabular}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & $							
	● Funktion □ ♥ ● f: y = 20000 · 1.045 ^x							
	- Linje g 40000							
	g . y = 40000 - Punkt							
	$A = Skärning (f, g, (15.747, 40000))) \rightarrow (15.747, 40000) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $							
	+ Inmatningsfält							
	-10000							
	······································							
	Svar: Efter 16 år har pengarna på kontot fördubblats.							

(**Exempel:** Kinas folkmängd var 1,27 miljarder människor vid folkräkningen år 2000 och ökade till 1,34 miljarder människor år 2010.

- a) Bestäm den årliga ökningen av folkmängden i procent.
- b) Avgör när Kinas folkmängd kan förväntas vara 1,5 miljarder.

Lösning:

g: a) Om vi kallar förändringsfaktorn *a*, så får vi potensekvationen

$$1,27 \cdot a^{10} = 1,34$$
$$a^{10} = \frac{1,34}{1,27}$$

På 10 år ökade antalet invånare exponentiellt från 1,27 miljarder till 1,34 miljarder

 $a = \pm \left(\frac{1.34}{1.27}\right)^{1/10} \approx \pm 1,0054$ Den negativa lösningen saknar betydelse

Svar: Folkmängden ökar med 0,54 % per år.

 b) Folkmängden är 1,34 miljarder år 2010. Anta att det dröjer *x* år tills folkmängden är 1,5 miljarder. Vi ställer upp ekvationen

 $1,5 = 1,34 \cdot 1,0054^x$

och löser den med grafritande hjälpmedel.

Glöm inte att använda decimalpunkt i stället för decimalkomma i GeoGebra.

På samma sätt som i föregående exempel ritar vi först graferna till f(x) = 1,5 och $g(x) = 1,34 \cdot 1,0054^x$ och använder sedan \nearrow . Skärningspunkten ger lösningen $x \approx 21$.

	$\nearrow \checkmark \not \succ \triangleright \odot \odot \checkmark \checkmark$	• ==2	4	1 C	Q	\equiv
	f (x) = 1.5	78	ĴУ			<u>-</u>
•	$g(x) = 1.34 \cdot 1.0054^{x}$:	2			
	$\begin{split} A &= Sk \\ \ddot{srning} \left(f, g, (20.9444, 1.5) \right) \\ &\rightarrow (20.9444, 1.5) \end{split}$		1	•		
+	Inmatningsfält					×
			-20 0	20 40	60) و
			-1			Q
<u> </u>			-2			::)

Det innebär att 21 år efter 2010, dvs. år 2031, kan Kinas folkmängd förväntas nå 1,5 miljarder.

Svar: År 2031 kan Kinas folkmängd förväntas nå 1,5 miljarder.

ON Med ditt digitala hjälpmedel

Vill man beräkna 10-logaritmen av 15 i GeoGebra, så skriver man **Ig(15)** i inmatningsfältet och trycker på Retur.

 $\mathsf{a} = \mathsf{log}_{10}\,(15)$

→ 1.176

Du kan också välja knappen \log_{10} på GeoGebras tangentbord under fliken $f(\boldsymbol{x}).$

ON Med ditt digitala hjälpmedel

Vill man beräkna 10-logaritmen av 15 i GeoGebra, så skriver man **Ig(15)** i inmatningsfältet och trycker på Retur.

 $\mathsf{a} = \mathsf{log}_{10}\,(15)$

→ 1.176

Du kan också välja knappen \log_{10} på GeoGebras tangentbord under fliken $f(\boldsymbol{x}).$

		Må	Ti	On	То	Fr					
	Vecka A	22,3 kg	15,0 kg	38,3 kg	16,7 kg	13,8 kg					
	Vecka B	13,5 kg	9,8 kg	12,6 kg	14,9 kg	13,5 kg					
1 ösning:	Vi använo	der GeoG	ebra för	att beräk	na medel	värde och standardavvikelse.					
0	Mata in v	ärdena fö	ör vecka A	A i kolum	n A och v	värdena för vecka B i kolumn					
	Markera	cellerna i	kolumn	A och väl	j 🚹. Kli	cka sedan på symbolen Σx.					
	Då får du	en lista j	på statisti	ska värde	en för ma	terialet.					
	Avläs resu	ıltatet.									
	Vocka A.										
	Model	do 21 2 1	a								
	Medelvar	Medelvärde 21,2 kg Avläs s, standardavvikelse vid									
	Standarda	Standardavvikelse 10,1 kg < stickprovsundersokning.									
	k 🖬 💅			5¢ ($ \equiv $						
	A 1 22.3	B 13.5	Statistik	Σx 123 日	± - +						
	2 15	9.8	Medel 21.22			Standardavvikelsen betecknas med					
	4 16.7	14.9	s 10.088 Σx 106.1			för en stickprovsundersökning oc					
	6	13.5	Σx ² 2658.51 Min 13.8			O_3 står för nedre och övre kvartil					
	7 8		Q1 14.4 Median 16.7								
	9 10		Q3 30.3 Max 38.3								
	11										
	13										
	14		lytta								
		, F	lytta eller välj obje	ekt HJAL	P						
	Gör på samma sätt med vecka B.										
	Vecka B:										
	Medelvärde 12,9 kg										
	Standard	Standardavvikelse 1,9 kg									

Under måndagen och onsdagen i vecka A slängdes det mer mat än vanligt. Det gör att både medelvärdet och standardavvikelsen är högre i vecka A än i vecka B. Kanske serverade kökschefen dessa dagar något som eleverna inte gillade, vilket gjorde att det slängdes mer mat. Förhoppningsvis är vecka B en mer normal vecka och då är det detta medelvärde som kökschefen bör använda i sin analys.

G→ Exempel:	Maria långt. värden finns r	tränar Under f a i ett s aågon k	längdsl fem vec spridni orrelat	kidåkni kor eft ngsdiag ion me	ng. Hoi er jul fö gram m llan vär	n åker r orsöker ed hjälj dena.	egelbundet ett spår som är 5 km hon förbättra sina tider. Pricka in p av din räknare och avgör om det	
	Vecka	1	2	3	4	5		
	Tid	19.34	19.21	19.11	19.00	18.53		
	a) Pri- avg	cka in v ör om	värdena det fini	a i ett sp ns någo	oridnin on korre	gsdiagr lation	am med hjälp av din räknare och mellan värdena.	
	b) Kan man med säkerhet säga att det finna ett kausalt samband? Motivera ditt svar.							
Lösning:	a) Skr välj i ne	iv in vä j 🥍 ur ederkar	irdena nder m nt.	i ett kal enyn 📲	kylblad . Välj	i Geo(Ingen u	Gebra. Markera cellerna och Inder rubriken Regressionsmodell	
Vi omvandlar tiderna till minuter. Tiden 19 minuter och 34 sekunder är t.ex. 19,57 minuter.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 Sva vec	A A A A A A A A A A A A A A A A A A A	B 19.57 19.35 19.18 19 18.88 9 18.88	XA1:A5 Regressic Ingen XA1:A5 Regressic Ingen	ngsdiagram * • • • • • • • • • • • • • • • • • • •	¢ v det finn s åktide	ns en negativ korrelation mellan antal er.	
	b) Ja, var	regelbu a andra	nden ti 1 faktor	räning f er, som	örbättr exempe	ar troliş elvis ski	gen resultatet men det kan förstås även dföret, som påverkat tiderna.	

